

Effortless and Streamlined Workflow for Absolute Quantitation of Therapeutic Monoclonal Antibodies using Promise Proteomics mAbXmise kits and TSQ Altis Plus Mass Spectrometer

Yvonne E. Song¹, Dorothee Lebert², Jean-Valéry Guillaubez², Stephanie Samra¹, Edward Goucher¹, Bradley Hart¹ Thermo Fisher Scientific, San Jose, CA, United States¹, Promise Proteomics, Grenoble, France²

Abstract

Purpose: To simultaneously quantify the signature peptides of multiple therapeutic monoclonal antibodies in human serum in a streamlined and confident way using Promise Proteomics kits and the TSQ Altis™ Plus mass spectrometer.

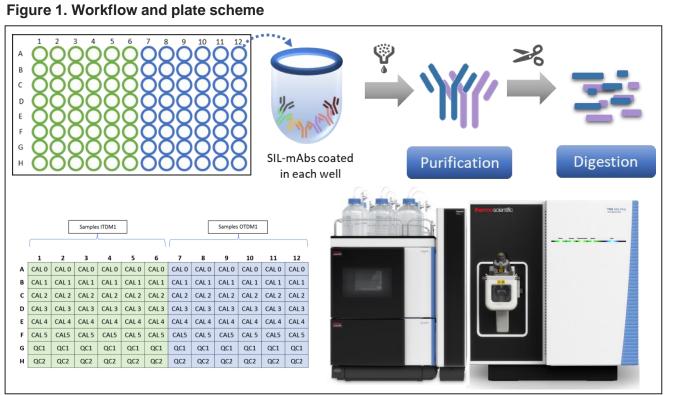
Methods: Samples were purified and trypsin digested according to the instructions provided by Promise Proteomics with minor modifications (refer to instructions manual https://customer.mabxmise.com). LC-MS/MS analysis was performed using Thermo Scientific™ Vanguish™ Flex UHPLC system coupled to TSQ Altis™ Plus mass spectrometer.

Results: Successfully completed process replicate analysis and LC-MS/MS analytical performance evaluation and passed acceptance criteria according to the collaboration study plan

Introduction

Laboratories continuously seek improved productivity and efficacy for clinical testing, ultimately impacting the turn-around time and sample throughput. Various efforts have been made including rapid and high-throughput testing, automation, and high-end instrumentation. In particular, mass spectrometry (MS) has gained significant popularity in clinical laboratories for TDM of mAbs due to its great versatility to measure such complex biological proteins qualitatively and quantitatively. Here we present the streamlined workflow for the absolute quantitation of therapeutic mAbs using the Promise Proteomics mAbXmise kits and the Thermo Scientific™ TSQ Altis™ Plus mass spectrometer

Materials and methods


Sample Preparation

The workflow is described in Figure 1 including the plate scheme and the list of kits is below.

- ITDM1: inflammation-TDM kit 1 for quantitation of 2 mAbs including adalimumab and infliximab (mAbXmise® ITDM1, Promise Proteomics, France)
- OTDM1: oncology-TDM kit 1 for quantitation of 7 mAbs including bevacizumab, cetuximab, ipilimumab, nivolumab, pembrolizumab, rituximab, and trastuzumab (mAbXmise® OTDM1, Promise Proteomics, France)

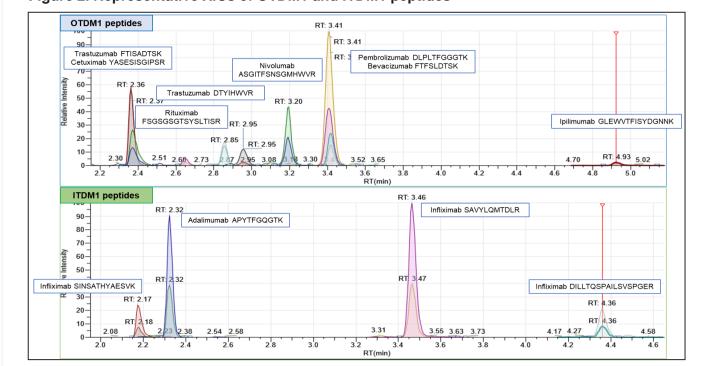
Test Method(s)

LC-MS/MS analysis was performed using Thermo Scientific™ Vanguish™ Flex UHPLC system coupled to TSQ Altis™ Plus mass spectrometer. LC and MS conditions are listed in Table 1. Transitions can be found in Tech Note (TN001753). After sample preparation, each wall was injected once for process replicate analysis. The same calibrator and QCs were pooled and redistributed for analysis of LC-MS/MS analytical performance in triplicate

Data Analysis

Data acquisition, processing, and reporting were performed using Thermo Scientific™ TraceFinder™ 5.1 software and the evaluation criteria for LC-MS analytical performance are listed in Table 2.

Table 1. LC and MS conditions

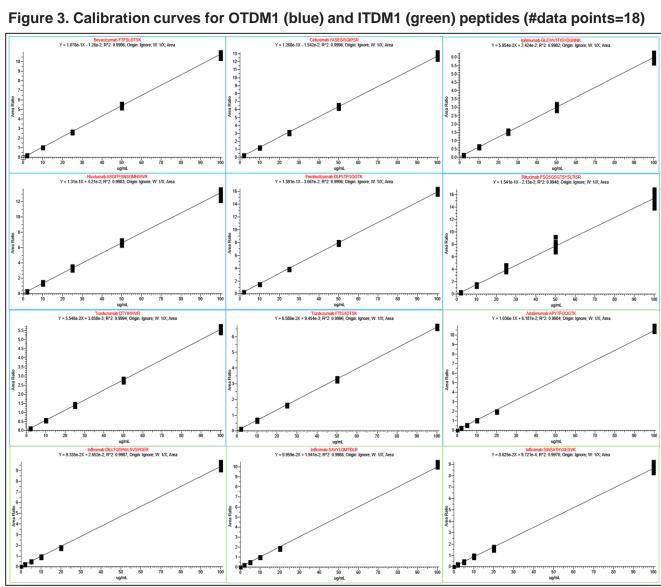

rable 1. LO and MO conditions									
		gradient							
Time (min)	% A	<u>% B</u>	Curve						
0.0	95	5	5						
0.5	95	5	5						
1.0	80	20	5						
4.8	60	40	5						
5.5	50	50	5						
6.1	10	90	5						
7.5	10	90	5						
7.6	95	5	5						
10	95	5	5						
Separation conditions									
Mobile phase A		0.1 % formic acid in	water						
Mobile phase P	0.1 % formic	acid in 10: 10: 80 water: i	sopropanol: acetonitrile						
Mobile phase B		(v/v/v)							
Flow rate		0.25 mL/min							
Column temperature	40 °C (Still Air)								
Injection volume	10 L	L (5 μL for full-process re	plate analysis)						
		parameters	,						
Source type		Heated electrospray ior	ization (H-ESI)						
Polarity		Positive	,						
Spray voltage (V)		3500							
Sheath gas (Arb)		40							
Aux gas (Arb)		7							
Sweep gas (Arb)		1							
Ion transfer tube temp (°C)		325							
Vaporizer temp (°C)		275							
		0.0 min: position 1	-6 (waste)						
Divert valve A	0.6 min: position 1-2 (MS)								
	6.2 min: position 1-6 (waste)								
Probe position (x-y-z)		Center - 1.5							
Trobe pecition (x y 2)	SRM sca	n parameters	EIVI						
Cycle time (sec)	Ortin ood	-	.35						
Q1 resolution (FWHN	1)).7						
Q3 resolution (FWHM).7						
CID gas (mTorr)			.5						
Source fragmentation	(V)		0						
Chromatographic peak wid			<u>6</u>						
RF lens (V)	11 (360)		60						
Dwell time priority			ormal)						
Dwell tille priority		3 (110	nnal)						

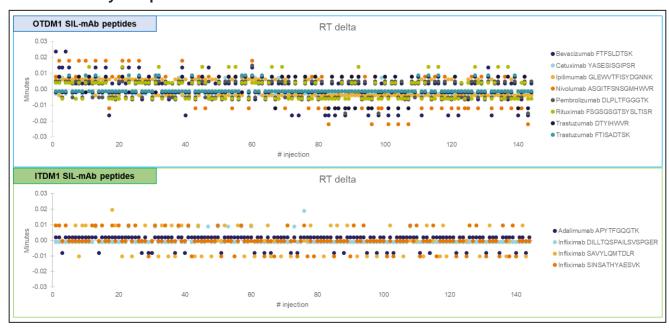
Analytical characteristics	Acceptance criteria				
QC accuracy	Mean concentration from 85 to 115 % for QC1 and QC2 samples				
QC precision	CV ≤ 15 % for QC1 and QC2 samples				
Lower limit of quantification (LLOQ)	 The analyte mean response at the LLOQ (CAL1) > 5 times the analyte response of the zero calibrator (CAL0 = blank sample). 				
	 LLOQ should be 2 μg/mL 				
	 Accuracy: mean concentration from 80 to 120 % 				
	• Precision: CV ≤ 20 %				
Linear range	Linear fit: R² ≥ 0.99 on the expected linear range 2 ~ 100 μg/mL				

Results

The highly comparable results were observed across all six replicates for both OTDM1 and ITDM1 kits with great linearity with R² > 0.994 and % RSD <15, indicating the reproducibility of the full plate sample preparation. Then, the six replicates of each calibrator and QC from each kit were pooled together, distributed to another plate following the same plate scheme, and analyzed in triplicates, generating 18 data points for each calibrator and QC sample. We successfully evaluated the LC-MS/MS analytical performance, showing excellent linearity with $R^2 > 0.997$ and % RSD <10 (Figure 3 and Tables 3 and 4). Additionally, Figure 4 shows extremely reproducible retention times of all SILmAb peptides with RT difference \pm 0.03 minutes during the evaluation.

Figure 2. Representative XICs of OTDM1 and ITDM1 peptides




Table 3. Results of LC-MS/MS analytical performance of ITDM1 peptides

Analytical characteristics	QC accuracy		QC precision		LLOQ				Linear range
Peptide	QC1	QC2	QC1	QC2	CAL0 response (5 x CAL0)	CAL1 respo nse	Accuracy	Precision	R ² ≥ 0.99
Adalimumab APYTFGQGTK	107.0%	95.2%	3.1%	1.9%	0.050 (0.250)	0.267	99.0%	3.2%	0.9984
Infliximab SINSATHYAESVK	99.8%	100.4%	8.7%	3.7%	0.002 (0.010)	0.193	111.6%	8.4%	0.9970
Infliximab SAVYLQMTDLR	103.0%	98.7%	2.6%	1.9%	0.016 (0.080)	0.219	100.2%	2.1%	0.9986
Infliximab DILLTQSPAILSVS PGER	96.4%	96.2%	2.8%	2.6%	0.024 (0.120)	0.223	105.4%	6.0%	0.9987

Table 4. Results of LC-MS/MS analytical performance of OTDM1 peptides

Analytical characteristics	QC accuracy		QC precision			LLOQ			
Peptide	QC1	QC2	QC1	QC2	CAL0 response (5 x CAL0)	CAL1 respo nse	Accuracy	Precision	range R ² ≥ 0.99
Bevacizumab FTFSLDTSK	101.1%	102.2%	1.9%	1.6%	0.009 (0.043)	0.138	98.3%	3.8%	0.9996
Cetuximab YASESISGIPSR	97.3%	96.6%	1.5%	1.8%	0.003 (0.015)	0.243	98.3%	3.6%	0.9996
Ipilimumab GLEWVTFISYDG NNK	95.0%	101.2%	6.1%	2.9%	0.009 (0.045)	0.136	106.3%	7.4%	0.9982
Nivolumab ASGITFSNSGMH WVR	95.2%	94.0%	3.3%	3.2%	0.040 (0.200)	0.297	102.6%	6.2%	0.9983
Pembrolizumab DLPLTFGGGTK	100.3%	100.0%	2.0%	1.4%	0.014 (0.070)	0.294	96.0%	1.8%	0.9996
Rituximab FSGSGSGTSYSL TISR	101.9%	105.3%	6.4%	5.9%	0.002 (0.010)	0.285	100.8%	10.6%	0.9971
Trastuzumab DTYIHWVR	101.2%	101.3%	3.1%	2.3%	0.010 (0.050)	0.116	99.1%	3.9%	0.9994
Trastuzumab FTISADTSK	100.2%	99.4%	1.8%	0.8%	0.028 (0.140)	0.177	102.6%	4.4%	0.9996

Figure 4. Variation in observed retention times of all SIL-mAb peptides during the evaluation of LC-MS analytical performance

Trademarks/licensing

© 2023 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. This information is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others.

mAbXmise monoclonal antibodies quantification kits OTDM1 and ITDM1 are In Vitro Diagnostic Medical Devices for laboratory professional use and CE-IVD labeled for Europe. Assay results are intended to be used by healthcare professionals. The kits are designed to perform absolute quantification by LC-MS (Liquid Chromatography – Mass spectrometry) of specific therapeutic monoclonal antibodies (mAbs) in a patient sample.

With respect to Materials required but not provided, the Instructions for Use state under Equipment: Triple quadrupole MS instrument or high-resolution MS instrument coupled to LC

PROMISE Proteomics products are distributed globally, so uses, applications, and availability of product in each country depend on local regulatory registration status. Products not registered for In Vitro Diagnostic Use are for Research Use Only. mAbXmise is a trademark of Promise Proteomics.